Image

What’s In A Name: The Colourful (& Sometimes Hurtful) Profession of Naming New Species

Elephas maximus borneensis, Funambulus palmarum, Ajaja ajaja, Oryza rufipogon…you may have come across these or something similar in your biology textbook or an article about wildlife. They are scientific names of animals & plants – Borneo elephant, Indian palm squirrel, Spoonbills and Wild rice, in that order.

At first read, we may not really decipher which species the name refers to. But when we do, we are pleasantly surprised.

One of the most exciting activities in the scientific community, is taxonomy – the science of grouping a newly discovered species. A part of this job involves naming the species.

While enjoyable, the process of naming a new species is also a very complicated task; which involves a lot of research, word play and sarcasm. If you’ve ever wanted to know how plants & animals get their scientific names, you’re at the right place.

 

Rules 2
Source: Pixabay

 

The rules of naming

The International Code of Zoological Nomenclature is the governing body which has complete control over all things taxonomy. It is the Code which spells out how an animal can be named and what rules must be followed while naming.

According to the Code, there are 3 cardinal rules that all taxonomists need to follow when naming an animal:

  • Don’t use a used name – The name must be completely unique.
  • Don’t be insulting – The name must not be rude to anyone.
  • Don’t name the species after yourself – The final name cannot include the name of the taxonomist.

Sounds simple enough? Unfortunately it isn’t.

There are many cases in the past when scientists named an animal to either gain recognition or to take a dig at a competitor.

There was Dr. May Berenbaum, the VP of Entomological Society of America, who named a species of urea-eating cockroach after herself – Xestoblatta berenbaumae. Of course, she did say that fame wasn’t her focus when she did this. Dr. Berenbaum was already a highly-reputed scientist in the community and she only wanted to showcase her passion for creepy crawlies by naming one after herself.

 

Cockroach xestoblatta-berenbaumae-male-female
Xestoblatta berenbaumae (Source)

 

Then there was famed 1700s botanist, the Father of Taxonomy, Carl Linnaeus. He is renowned today, not just for his contribution to taxonomy, but also for being unbelievably petty and mean towards people he didn’t like. At the height of his career, he used fellow botanist and friend Johann Georg Siegesbeck’s name as inspiration to name a foul-smelling genus of weed – Sigesbeckia orientalis – after Siegesbeck publicly criticised Linnaeus’ method of species classification. This, many believe, was meant to be a dig at Siegesbeck’s  jealousy at Linnaeus’ success.  

 

Anderson (Mrs), active 1858; Carl Linnaeus (1707-1778), Later Carl von Linne
Carl Linnaeus, the Father of Taxonomy (Source)

 

St Paul Wort
Sigesbeckia orientalis aka St. Paul’s Wort (Source)

 

And who can forget Daniel Rolander, Linnaeus’ most-hated protégé?  After Rolander refused to share his field study results and samples from his trip to Suriname with Linnaeus, the latter promptly went ahead and got him banned from leading scientific and academic institutions of the time. To add salt to injury, Linnaeus also named a type of dung beetle – Aphanus rolandri – after Rolander. Ouch. 

Loosely translated to English, Aphanus rolandri means “inconspicuous Rolander”. Now that’s what I call a double whammy.

 

Beetle aphanus_rolandri
Aphanus rolandri (Source)

 

Here’s one more – Famed palaeontologist O.A. Peterson named a species of prehistoric pig as Dinohyus hollandi, after Director of Carnegie Museum of Natural History W.J. Holland, for the latter’s annoying habit of hogging the limelight. Holland was known in scientific circles for taking credit for every research paper published by his students, irrespective of whether he contributed to it or not.

 

 

Okay back to the rules of taxonomy

Barring these and a few other instances of inspired, but hurtful name-calling, taxonomy has for the most period, been a civilised affair.

When naming an animal or a plant, taxonomists are told to consider the specialty of the species as inspiration. So, when scientists found a new genus of tiny sea snails, they named them Ittibittium; given how they were much smaller in size compared to another genus of sea snails – Bittium.

 

Snails Ittibitum
Genus Ittibittium (Source)

 

The second way to name a new species – find another creature that looks exactly like it and name the new species after that. Enter Scaptia beyonceae, a species of horse fly which is renowned for possessing a giant, golden bottom. Who else in the animal kingdom had such a big, tanned, booty? Why, Beyoncé of course.

 

Fly Scaptia-beyonceae
Scaptia beyonceae & Beyoncé (Source)

 

TV shows and story book characters have inspired species names too. A newly discovered species of jellyfish was named Bazinga reiki after The Big Bang Theory’s protagonist Sheldon Cooper’s famous catchphrase “Bazinga”. The bacteria genus Midichloria was named after a fictional alien species called “midichlorians” described in the cult classic Star Wars.  Then there’s the fossil of a large turtle, discovered in 1992 – Ninjemys oweni, named after the hit show Teenage Mutant Ninja Turtles.

 

 

So, to encapsulate

Scientific names must be unique, kind, not self-glorifying and clever. They must take inspiration from the species itself or another, just like it.

Can only scientists name a new species?

Although scientists who discover the species usually get the honour of naming them, some scientists allow members of the public to send their suggestions.

In 2000, Dr Nerida Wilson discovered a species of nudibranch in the Indian ocean. She didn’t have a name for the animal. So, she decided to let the people decide. She invited names from the public and the submissions were reviewed by a panel of expert taxonomists. Finally, the entry by Patrick from New South Wales was chosen and the nudibranch was named – Moridilla fifo.

 

Nudibranch fifo
Moridilla fifo (Source)

 

Oh yes, here’s something else…

The names don’t need to be in Latin.

Although Latin was the language of taxonomy in the 1700s, today, there’s no strict rule requiring taxonomists to name species in Latin or Greek. You can provide a name in any language of your choice and taxonomists will tweak the spelling to resemble Latin or Greek, without actually changing or translating the name itself.

Want to name a species yourself?

Go on and keep your eyes peeled for opportunities. Who knows, the next big discovery could be named by you.

 

 

-NISHA PRAKASH

 

PS: Featured image: Hierarchy in taxonomy Dinohyus hollandi – Fossil; Representative imageBazinga reikiMidichloriaNinjemys oweni 
Image

Do Other Animals Sweat and Do They Stink?

Humans sweat in order to regulate body temperature.

When our bodies get too hot, they release water, minerals and salt in order to cool themselves down. Without sweat, our bodies would overheat, our organs would start to malfunction and soon we would have a heatstroke; which could be fatal.

But what about other animals? Do they sweat too?

Yes, they do. So, this is one question you don’t have to sweat over.

  • Dogs and cats sweat through their paws/pads. You can see faint wet footprints on really hot days.
  • Horses sweat too. Their sweat contains a detergent-like compound known as “latherin”, which helps clean their coats and keep them cool. This compound is the reason why you see a foam-like layer on horses’ coats on really hot days or when they’re overworked.
  • Monkeys, chimps, gorillas and orangutans all sweat too. But we can’t see them sweat like we do, since their sweat glands are located below their fur.
  • Hippos secrete a really scary-looking liquid, called “blood sweat”. This liquid contains a reddish-orange pigment (which gives it its blood-red colour) and it offers anti-bacterial and cleansing properties, which keep the hippo healthy. In addition to this, it functions like sweat and regulates the hippo’s body temperature.

You know who doesn’t sweat? Pigs.

Pigs regulate their body temperatures by wallowing in the mud. So, they don’t sweat like we do. The expression “sweating like a pig” actually refers to pig iron, which is a type of iron metal. During the smelting process, pig iron tends to heat-up to a very high temperature. When it cools down, it reaches dew point, resulting in the formation of large dew droplets on the iron. 

 

piglet-3386356_1280
Sweating like a pig? (source)

 

What about the stench?

Okay, lets set the record straight.

Human sweat actually doesn’t have an odour of its own. The bacteria located on the skin, especially those around the sweat glands, start to break down the sweat compounds when sweat is produced. The resultant changes in the chemical make-up of the sweat leads to the release of an odour, which stinks.

There’s something else too.

Humans have two types of sweat glands –  Eccrine sweat glands (which are found all over the body) and Apocrine sweat glands (which are found under the armpit & around the anus). When the Apocrine sweat glands mature and start to function after a child hits puberty, it releases a thick & oily sweat, different from the one released by the Eccrine sweat glands. It is this thick and oily sweat that produces a terrible stink when broken-down by bacteria.

So, what about animals? Do they stink too?

Pigs don’t sweat the way we do and so they don’t produce any stench whatsoever. The same goes for any other animal that doesn’t sweat the way humans do.

What about the ones that sweat like us? Well, the bodies of other “sweating” animals do produce smells; just not the ones we’re talking about. 

Other types of body odour

The smell produced by animal body secretions shouldn’t be confused with sweat-induced smell. Some secretions, like musk, civet & ambergris (which are derived from musk deer, civet cats and sperm whales respectively) , aren’t sweat. In other cases, animal body odour is actually pheromones, which are released by animals to inform potential mates that the animal is willing to receive sexual partners.

Then there are gorillas, which produce a smell, unique to each individual troop member. But these odours act as social markers, providing other troop members and enemy gorillas information about the animal. These smells have been shown to affect how gorillas behave with one another.

But coming back to sweat and its stink; there is still no strong evidence to show that animals which do sweat like humans, stink like humans too. So far humans are the only ones who produce copious amounts of sweat and who stink up the joint when they sweat.

 

-NISHA PRAKASH

 

P.S: Featured image
Image

Geckos are Weird, but Awesome: Here are 3 Reasons Why

Most of us don’t like geckos. They’re creepy little buggers who skulk in bathroom corners and whose bulging eyes look like they’re staring into your very soul. A little unnerving, to be honest.

But did you know that geckos are some of the most ingenious creatures in the world? In fact, they’re responsible for being the muse behind some of the world’s most brilliant technologies.

Scientists today have begun full-fledged studies into these slippery critters, in the hope of finding more technological inspiration from them. Here are three amazing and weird facts about them:

  • They take a bath in dewdrops

Dewdrops are formed when the surface of a plant or insect’s body is hydrophobic .i.e. repels water. As it turns out, geckos have a similar, if not the same, hydrophobic skin. Gecko skin contains tiny hair-like spines which trap air from the atmosphere. When this layer of air cools down, it becomes water.

As time passes and more air collects on the hair particles, the water droplets grow in size. When they’re large enough, they are able to be manipulated by external forces like wind and gravity. A slight gust of wind or the gecko moving can make the dewdrop slide right-off its body. When the dewdrops fall-off the gecko, they clean away dirt particles on the body. This technique is extremely useful for geckos, given how many species live in dry and arid wastelands where little water is available. This type of water retention can help them stay clean and healthy, without having to look for water resources.

Here’s another fun fact. Geckos are the first vertebrates to be found possessing hydrophobic skin. Their skin has now inspired scientists to develop super-hydrophobic clothing which can self-clean by collecting water vapour from the air and which wouldn’t need washing, ever!

 

Gecko 4
Source: National Geographic

 

  • Their tails spin a tale of their own when chopped-off

Geckos, just like other lizards, have the ability to voluntarily cut-off and drop their tails when faced with danger. This defensive technique gives them the opportunity to escape. Think about it. You’re about to catch a sweet-looking gecko, when BAM!, its tail falls off. Shocking isn’t it? You probably wouldn’t want to touch it after this.

But the interesting part isn’t this ingenious tail-dropping strategy. Studies show that gecko tails can move independently in and of themselves for up to 30 minutes after they fall off. Researchers from the University of California and the University of Calgary collaborated on a project in 2009, to understand how these tail movements are controlled after the tail falls off.

The scientists pinched the base of a gecko’s tail and made it fall off. They then attached four electrodes to both sides of the tail – two on each side. They found that once the tails fell off, they began to swing from side to side. This was an automatic response. But the moment the tail was lightly-shocked through the electrodes, it started jumping and somersaulting in the air erratically.

As it turns out, gecko tails have brains of their own. The moment a predator so much as grazes against it, the tail starts jumping and flipping. A few seconds later, it goes back to its serene swinging movement. If the predator touches the tail again, it explodes into a series of complex back spins, flips and jumps.

Scientists believe this technique is an additional measure to alarm predators and keep them occupied while the gecko escapes.

 

Gecko 5
Source: National Geographic

 

  • They can right themselves mid-air just like cats

While felines have the credit for being the most aerially acrobatic of all vertebrates, it’s the geckos who have truly opened science’s eyes to amazing possibilities. Until someone observed the unique way in which geckos flipped mid-air to stop their drops, no one knew these little lizards were capable of mid-air antics.

Experiments have shown that when geckos walk on non-slippery surfaces, their tails are held high up, away from the floor and pointing towards the sky. If the ground/wall is slippery, the gecko lowers the tail to the floor and leans its body against it for support – kind of like on a fifth leg.

When geckos slip and fall, they rotate their tails at a right angle to their body. Then they twist their tails again in the same direction, to make their bodies rotate too. They basically use the momentum generated by their tails to turn right-side up, to land on their feet.

This technique ensures that geckos always land on their stomach, irrespective of the direction their bodies were in when their fall began. This entire process of turning right-side-up takes only about 100 milliseconds! Now that’s what I call fast.

For comparison, cats don’t use their tails to land on their feet when they fall. They have a very flexible backbone and free-floating collarbones which give them the flexibility and speed to twist their bodies up to 180 degrees in seconds.

 

 

-NISHA PRAKASH

 

P.S: Featured image: Gecko

 

Image

Are Peacock Feathers Really That Colourful or Is It A Play of Light?

Today is India’s 70th Republic Day and I thought what better animal to talk about today, than our National Bird – the Peacock.

Peacocks are renowned around the world for their immensely beautiful and supremely colourful tail feathers. For quite some time, it was assumed that peacocks derived their brilliant rainbow-like colours from plants; just like lots of other birds.

But recent research has revealed that the brilliant peacock tail feathers may actually be the result of light reflection, rather than the consumption of pigment-filled leaves, seeds and fruits.

Photonic feathers

Electromagnetic radiation is essentially a type of light. The electromagnetic spectrum is at its most-basic, the distribution of this electromagnetic radiation or light. But not all of these light waves can be seen by the naked eye. The portion which we can see through the naked eye is called the visible light and we are able to see them, because of their specific wavelengths. The typical human eye can see electromagnetic waves that fall between 390 nanometres to 700 nanometres on the electromagnetic spectrum.

The feathers of a peacock contain structures called “photonic crystals”, which are bands of photons (photons = fundamental particles of light) that selectively reflect certain types of electromagnetic waves. When these waves fall within the visible light range of the spectrum, they can be seen by the human eye. The different colours that are visible on the peacock’s feathers, are a result of waves of different lengths being reflected by the photonic crystals.

 

peacock-feathers-3013486_1280

 

When light falls on the peacock’s feathers, the crystal lattice (the structural arrangement of the particles in crystals) in the photonic crystals, capture the light and reflect them in specific ways. The length of these reflected waves, then determine the colour the peackon feather, plume and tail.

Research has found that peacock feathers get their colours when light is reflected off melanin-containing crystalline lattice rods that are spaced:  

  • Iridescent blues – 140 nanometres apart.
  • Greens – 150 nanometres apart.
  • Copper & Browns – 150-185 nanometres apart.
  • Yellows – 165 nanometres apart.
  • Other colours – from colour-mutations derived from blues and greens.

It isn’t just peacocks who possess photonic crystals in their feathers. Butterflies have them in their wings and chameleons have them on their skin.

Information about photonic crystals and their impact on animals is now being used by scientists to better-understand light and the role it plays in the animal kingdom.

 

-NISHA PRAKASH

 

Image

5 Fun Facts About Dugongs

Dugongs are marine animals which belong to the family Dugongidae. They are part of the order called Sirenia aka sea cows, which also includes the manatees. They can be found dispersed across the Indian ocean, Pacific ocean and the region between East Africa & Australia. 

Here are five facts about them: 

  1. Apart from manatees, dugongs are the only marine animals that are strictly herbivorous, eating sea grass, weeds and aquatic plants. All other marine animals are omnivorous. 
  2. The closest relative of dugongs is the Steller’s Sea Cow, which was driven to extinction in the mid-1700s.
  3. A dugong’s gestation period lasts one year and females give birth once every 3-7 years. 
  4. Although they resemble seals and walruses in appearance, dugongs are actually more genetically similar to elephants. That’s because these animals evolved from the same ancestor. 
  5. According to the IUCN Red List, dugongs have a “Vulnerable” classification; meaning they are very vulnerable to becoming extinct if conservation efforts aren’t set in place. As of today, less than 7500 dugongs are alive in the world.  

 

Bonus

The name “dugong” comes from the Malay word “duyung“, which means “Lady of the Sea“. Before scientists officially documented this species, sailors & fishermen out at sea assumed dugongs (and their cousins, the manatees) to be mermaids, sirens and other mystical creatures. This was predominantly because of the way these animals swam.

Dugongs and manatees rise out from the underneath the water and perform tail-stands (where they stand & balance on the tip of their tails) when coming up for air. This prompted sailors & fishermen to assume they were the mythical sea-dwelling creatures they grew up hearing about. 

 

 

Steller's Sea Cow
A representative image of a Steller’s Sea Cow – the extinct relative of the dugong (image source)

 

Dugong 1
Some more facts about dugongs (image source: pinterest)

 

Video: Now let’s see a dugong in action

 

 

-NISHA PRAKASH 

P.S: Featured image: National Geographic; Dugong vs Manatee: Indigoscuba
Image

5 Fun Facts About Fossils

  1. Fossils are the remains of animals which have died millions of years ago. They occur when animal remains are preserved under layers of earth and water over millennia. The pressure and temperature of the soil need to be just right in order for the remains to become fossilised. Fossils are normally found in the sedimentary layer of the soil, when clay, mud and rocks accumulate on the top and compress the soil in the bottom.
  2. There are 3 types of fossils on the planet – Body fossils which include the hard parts of an animals body such as teeth, nails, scales, shells, feathers and fur;  Trace fossils which are physical signs that an animal was living/present in a particular place, for example footprints, prints of nest, faeces, egg shells and tracks; Plant fossils which are fossilised remains of plants and which include seeds, flowers, leaves, roots and shoots. 
  3. The oldest fossils on Earth are approximately 3.7 billion years old. They are fossils of stromatolites – which are mounds or sheets of mud that preserve cyanobacteria – the earliest bacteria that developed on Planet Earth. Apart from the bacteria themselves, the stromatolites also contain chemical by-products produced by the bacteria too. This gives us a glimpse into how the Earth was geographically and chemically billions of years ago.
  4. Fossil fuels aren’t made from actual fossilised dinosaurs or plants. Fossil fuels like oil, coal and natural gas were formed when microscopic algae-like creatures called diatoms died in massive numbers and which over time were fossilised. The intense soil pressure on these fossil remains converted the carbon inside the diatom remains into fuels.
  5. Scientists determine the age of fossils using two processes. The first is called the “carbon-14 dating” which involves studying the time it takes for the carbon present in the animals’ bodies to decay over time. The other process is called the “molecular genetic clock” which involves comparing the DNA and physiology of fossilised remains to animals that are alive today.

 

Bonus

Sometimes, when animals and plants get trapped inside tree sap or resin, over time, they fossilise completely intact – feathers, fur, bones, teeth, bodily fluids, roots etc. – to form a product called “amber“. The fossils preserved in amber are the most significant finds for any scientist or paleontologist, since these fully-intact fossils offer researchers a look at how animals really looked like millions of years ago and whether these species have changed over time or not. Take a look at this article to see the 10 strangest things to fossilise in amber

Fossil 2
A butterfly fossilised in amber (image source)

 

Fossil 4
A body fossil of a dinosaur (image source)

 

Fossil 5
Trace fossil of a trilobite – this fossil is the track remains of a trilobite as it moved across the seafloor (image source)

 

Fossil 3
Stromatolites in Hamelin Pool, Western Australia (image source)

 

 

 

 

-NISHA PRAKASH

P.S: Featured image: Fossil of a lizard

 

Image

5 Fun Facts About Africa’s Great Migration

You may have seen it on television – it’s an event that National Geographic has always loved to film. A grand spectacle and a treat for the senses, the Great Migration in Africa is the annual movement of the world’s largest (non-human) land animal group from one part of Africa to the other, in search of food and safer breeding grounds*.

Wildebeests, antelope, zebra and big cats congregate for five months of rigorous walking, eating, birthing and killing. Here are 5 amazing facts about it:

  1. The Great Migration starts in Tanzania at the Serengeti and Ngorongoro Conservation areas and ends at the Maasai Mara National Reserve in Kenya. The migration starts in the month of November and the animals reach their destination in March.
  2. A recorded 1.5 million wildebeest, 200,000 zebra and thousands of antelope make the migration each year. The animals travel a staggering 2900 kilometres (1800 miles) in total, from Tanzania to Kenya and back during this journey.
  3. The Great Migration follows one of the most dangerous routes in Africa. Animals making the journey have to deal with hungry predators (lions, cheetahs & crocodiles), treacherous floods, the uncaring African sun, mean-spirited tsetse flies and physical tiredness. More than 250,000 wildebeests and thousands of zebras and antelopes die each year on the journey. This is excluding the thousands of calves who are left orphaned and vulnerable to predators after their mothers die. A recorded 3000 lions follow the herds on their journey, picking off the weak and the injured.
  4. More than a foraging mission, the Great Migration is a breeding expedition. Pregnant wildebeests move from Tanzania to Kenya for better environmental conditions for calving. An estimated half a million baby wildebeests are born annually during the migration. In the peak of the calving season (February), more than 8000 wildebeest calves are born in a single day!
  5. Although they look like they’re confused and panicked all the time, the massive herds of wildebeests, zebras and antelopes actually function together as one cohesive unit. They display a tactic researchers call “swarm intelligence”, where they carefully analyse, strategise and implement a  plan of action to get safely past any threat together. There’s no “I” in this family.

 

Bonus

There is still no established and accepted explanation for the occurrence of the Great Migration.

Some scientists believe the changing chemistry of the grass could be the reason for the movement. When levels of phosphorous and nitrogen in the Serengeti grassland reduces, the wildebeests may be encouraged to move elsewhere for more nutritious meals, acting as the catalyst for the Great Migration. Others believe that the migration may be the result of a co-ordinated effort helmed by a leader. But so far there has been no evidence of there ever being an alpha-wildebeest in any herd. Then there are those scientists who believe that the Great Migration is the consequence of instinct and DNA – a purely biological process that has no other reason.

Well, whatever the rationale, fossil records show that the Great Migration has been in occurrence in East Africa for over one million years.

 

Migratie-Serengeti-map
The Great Migration – Route Map (image source)

 

serengeti-migration
A sea of wildebeests, zebras and antelopes greet the eyes during the Great Migration. Often, these herds extend all the way to the horizon; but they don’t stop there. They go on & on. (image source)

 

Wildebeest-Crossing-mara-river-Serengeti-lodge
Wildebeests crossing the Mara river – this is where they are most vulnerable to attack from crocodiles. (image source)

 

wildebeest-birth-marataba-7-1024x650
A wildebeest mother with her newborn calf. (image source)

 

Video: Watch the culmination of the Great Migration – wildebeest giving birth & a newborn’s first, wobbly steps. 

 

-NISHA PRAKASH

P.S: Featured image
*Humans take the crown for the farthest migrations in search of food and shelter. 
Image

Deceptive Sizing: 3 Newborn Animals Who Are Ridiculously Smaller Than Their Parents

Ah baby animals…these bundles of joy have been lighting up the wild for millennia. While everyone has been raving about their cuteness, not a lot of people have spoken about their size. Let’s face it, when it comes to size, some animals are impressive…impressively small. 

Here are 3 animals whose babies are way smaller than you thought they would be: 

 

Kangaroos

Kangaroo adults can reach heights of 5.25 feet (1.6 meters) and can weigh 90 kilograms (200lbs). But their newborn joeys are smaller than gummy bears, often smaller than 25 millimeters. 

 

 

Watch the incredible journey this little joey makes to reach the safety of its mother’s pouch:

 

 

Pandas

At their heaviest, adult pandas can weigh 160 kilograms (350 lbs). But their tiny cubs weigh only 1/900th of their mother’s weight! Now that’s really tiny. 

 

Panda 2
A panda mom with her newborn cub

See that little pink floppy thing on the left side? yup, that little nugget is the cub.

Here’s a fun question; what do you call a group of pandas? An embarrassment! Ha ha, all jokes aside, a group of pandas is called “an embarrassment” because of the boisterous way in which panda cubs play when they’re together. It could embarrass any mum. 

Now indulge in some cub time by watching twin panda cubs embark on their first 100 days of life. 

 

 

Elephants

One of the most intelligent animals on the planet, elephants have longest gestation period in the wild. It takes their bodies 22 months to fully develop the calf (imagine being pregnant for almost two years!). But surprisingly, baby elephants when born are only 90 kilograms (200 lbs), while their heavy-weight mothers, aunts and sisters (and not to forget, their brothers and fathers) can reach ridiculously high weights of 3600 kilograms (4 tonnes)! 

 

 

Watch as this newborn calf, just hours old, meets his herd-mates, learns how slopes are not a baby’s friend and discovers the forest he is to grow up in. 

 

 

 

-NISHA PRAKASH 

 

 

 

 

Image

5 Fun Facts About Crabs

Crabs are crustaceans, marine animals which have a thick exoskeleton made of a chemical called chitin (which is chemically derived from glucose). Crabs belong to the class Malacostraca, which means “soft shelled animal” and to the order Decapoda, which mostly includes marine crustaceans (like lobster, shrimp and prawn) that scavenge for food, as opposed to hunting them. This makes crabs soft-shelled scavengers.

Here are five fun facts about them: 

  1. There are two types of crabs in the world – true crabs and false crabs – classified so because of their differing physiology. True crabs have the traditional body structure of a crab – a short and shallow abdomen curled underneath the shell and 4 pairs of legs excluding the pincers. False crabs on the other hand, look a little like crabs, but not completely. They have longer abdomens and less than 4 pairs of legs. True crabs include spider crab, blue crab and ghost crab. False crabs include king crab, hermit crab and porcelain crab. There are a total of 5000 crabs in the world – 4500 true crabs and 500 false crabs. 
  2. The largest crab in the world is the Japanese Spider Crab, which measures 13 feet or almost 4 meters from one end of the body to another. In comparison are the Coral Gall crab, Pea crab, Marsh Fiddler crab and Flattop crab – all of which measure in at a teeny-tiny half an inch at adulthood. If you kept 4.5 standard sized mail boxes one-on-top-of-the-other on one side and a small pea on the other side…well, that’s how the size difference would look between these crabs.  
  3. A small species of crab called Lybia or boxer crab, carry stinging anemones in their pincers anywhere they go. Why?  Lybia are very small in size and they don’t have venom to protect themselves from predators. They use the anemones in a mutually-beneficial partnership where the anemone acts as their defensive, venom-filled gloves. If an animal were to attack the Lybia, the anemone would sting the predator, protecting the crab. In return, the crab takes the anemone to different water bodies, allowing it to feed-off various sources and gaining valuable nutrients not found in its native environment. 
  4. If a crab loses its limbs in a fight, it can grow them back in a matter of months. This is a feature that is also found in starfish and lizards. 
  5. Crabs walk sideways because their legs are positioned to the sides of their body and their joints bend outwards and sideways. The reason for this type of evolution traces back to the crabs’ feeding behaviour. As sand-digging scavengers, crabs never needed to move forwards or move fast. This meant they didn’t need forward bending legs (which are one of the reasons animals can walk or run fast) and could make-do with sideways legs and sideways walking. However, not all crabs walk sideways. Frog crabs and spider crabs belong to the handful of crab species that walk forwards. 

 

 

Bonus

There is a type of parasitic barnacle called the Sacculina, which injects itself into the crab’s body, takes control of the crab’s will and makes it do its bidding. Crabs infected by Sacculina can’t control their own body mechanisms and are forced to become walking, breathing incubators of Sacculina eggs. Read this highly-informative article to learn all about the relationship between the Sacculina and its crab host. 

Here’s what a crab infected by Sacculina look like: 

 

 

Video: Coconut tree crabs are the only type of crabs that can climb trees. Watch this monster of a crab climb a tree, bend coke bottle caps and more. 

 

 

Crab 1
A Lybia with anemone in its pincers (image source)

 

 

 

 

-NISHA PRAKASH 

P.S: Featured image – The Sally Lightfoot crab from the Galapagos Islands. Sacculina – Mental Floss & Wikipedia.

 

Image

5 Fun Facts About Possums

Posssums are marsupials (pouched mammals) that are found in North America. They are the only marsupial species found outside Australia and New Guinea. They belong to the order Didelphimorphia, to which belong 95 species of possums. 

 

Here are 5 fun facts about them: 

  1. Possums are renowned for their ability to “play dead”. In reality, possums don’t actually “play” dead. Their paralysis and almost-dead like state is an involuntary physiological reaction where their nerves and muscles literally freeze and stop working for hours due to stress. This in-built defense mechanism has allowed the possum to survive from pre-historic times. 
  2. Lyme disease is a tick-bite induced disease that results in terribly itchy and inflamed rashes, joint pain and fatigue. Possums in your backyard is a great defense against Lyme disease. It’s been found that possums prey on over 5000 of the ticks and fleas that spread the bacterium Borrelia burgdorferi, which causes Lyme disease. 
  3. Apart from the venom of the Coral Rattlesnake, possums are immune to all other snake venom. That’s why they regularly prey on snakes in the wild. A few years ago researchers created an anti-venom using possum peptides (short chain amino acids linked by peptide bonds), which they injected into mice. They then injected snake venom into the mice only to find the venom absolutely useless. 
  4. Rabies virus require very hot temperatures to develop and spread. But possums have very low body temperatures compared to other mammals and this makes them invulnerable to rabies. You can almost never find a possum with rabies. 
  5. Primates aren’t the only species to be gifted with opposable thumbs. Possums have opposable thumbs called “halux” on their feet and they use them to climb atop the steepest trees and into the deepest sewers in search of food. 

 

Bonus

Contrary to popular belief, possums and opposums aren’t the same animal. They also don’t belong to the same species. For one, possums belong to the Didelphimorphia order in North America, while opossums belong to the order Phalangeridae in Australia. Both animals look similar, but behave completely differently. It was because of this similarity in physical features that led scientists to confuse the opposum for a possum. 

 

Possum 3
Possums are excellent climbers and use their tails as rudders and as a fifth limb to improve their dexterity. (image source)

 

Possum 1
A possum with her young (image source- pixabay)

 

-NISHA PRAKASH

 

P.S: Featured image – Wikipedia 
Image

5 Fun Facts About Dung Beetles

Dung Beetles are members of the order Coleoptera, which include insects that have hardened wing cases and not papery wings like other insects. As members of coleoptera, they belong to the super-order Endopterygota, which constitutes insects whose bodies undergo a drastic transformation from how they are in the larval stage to how they are in the adult stage. Other insects that share their super-order are bees, butterflies, flies and ants. 

Here are 5 fun facts about dung beetles: 

  1. We all know that dung beetles love to eat poop. But research shows that dung beetles have a blatant preference for herbivore poop, given the high nutritional value it has from the undigested plant matter. Carnivore and omnivore droppings which contain much less nutrition than what beetles require, are only consumed occasionally.
  2. Did you know that dung beetles have been around from the past 30 million years? Fossil records in South America show prehistoric dung balls, similar to the dung balls today’s dung beetles make, around sites where herbivorous dinosaurs were found. Looks like someone was a good samaritan, keeping dino poop off the streets. 
  3. Although the quintessential image of a dung beetle is that of a beetle pushing around a ball of poop, most dung beetles actually don’t indulge in this behavior. Many dung beetles either live within piles of animal poop or burrow holes into the ground below the poop, as these help the beetles gain quick access to the poop when they’re hungry. Dung beetles only roll their dung when they need to carry food to their nests, which may be far away from the pile of fresh poop. 
  4. One type of dung beetle from Africa, the Scarabaeus satyrus, uses the Milky Way Galaxy to navigate and travel. When this beetle needs to transport its ball of poop, it waits for it to get dark, gets on top of the poop ball, looks towards the sky, finds the milky way and uses the stars to make its way home. If anything blocks their view of the stars (like scientists did when they placed tiny hats on these dung beetles to check their navigation reflexes when blind), these beetles will wander aimlessly like lost puppies. Talk about requiring celestial guidance.  
  5. If you thought a tiny hat didn’t complete its trousseau, don’t worry. There’s more to come. To test whether dung beetle poop-ball-rolling efficiency was affected by the heat of the midday sun, scientists put selected dung beetles in tiny silicon booties. They noticed that the beetles wearing the booties took lesser breaks and were faster in their walk & poop-rolling. 

Bonus

With all this talk of poop-rolling, don’t you want to know what weight a dung beetle can pull during each poop-rolling session? A dung beetle can pull as high as 1,141 times its own body weight! That’s the equivalent of a 70 kilograms human being pulling six double decker buses filled with people!

Here is what we do in the name of scientific inquiry: 

DB 2
(image source – pixabay)

DB 4

(image source)

-NISHA PRAKASH 

P.S: Featured image – Pixabay; Dung beetle wearing a hat – Nat Geo; Dun beetle wearing shoes – Scientific American
Image

5 Fun Facts About Hibiscus

Hibiscus, also called Rose Mallow, are flowering plants that belong to the order of Malvaceae – which are plants that grow in warm, temperate, tropical and sub-tropical regions. There are 679 species of hibiscus in the world. 

Here are 5 more facts about them:

  1. Hibiscus are edible and have a citrusy taste. Roselle, a type of red-coloured hibiscus found in West Africa is used to make a special type of prawn soup that locals eat as a delicacy during festive times. The Paites tribe in Manipur, India also uses hibiscus leaves in their cooking, for its uplifting flavour. 
  2. One of the primary reasons why people started brewing hibiscus tea was because of the hibiscus flower’s unique diuretic properties – it has the ability to stimulate urine production in the body, thereby helping the body throw out harmful toxins. 
  3. Hibiscus is the National Flower of 3 countries – Republic of Haiti, Malaysia and South Korea.
  4. Hibiscus flowers and leaves should never be consumed by pregnant women. Why? Hibiscus is an emmenagogue food – in addition to stimulating urine production, hibiscus flowers stimulate blood flow in the pelvic region. A pregnant woman regularly consuming hibiscus flowers, leaves or hibiscus-infused foods and beverages will confuse her body into setting the menstrual process in motion. This can lead to early labour or miscarriage! Even lactating mothers would be better off staying far away from hibiscus as consumption could lead to a stop in milk production. 
  5. Want to shine your dirty shoes before a big meeting? Go right into your garden and get a hibiscus. Hibiscus oil is a natural shoe-shiner and is used as a shoe polish liquid across Asia. 

 

Bonus

Women in Hawaii and Tahiti have an interesting custom. Single women who come of age, who are ready for marriage and who wish to be courted wear a hibiscus flower behind their right ear; while married women and betrothed girls wear the flower behind their left ear. 

 

Hib 4

 

Hib 1

 

Hib 2

 

-NISHA PRAKASH 

 

P.S: Images – Pixabay
Image

5 Fun Facts About Uguisu

(Hear the pronunciation of “Uguisu” here)

Uguisu, called the Japanese Bush Warbler in English, is a small bird that is predominantly found on the island nation of Japan and in certain places of Korea, China and Russia. A very shy bird, very little is known about it. 

Here are fun five fun facts about Uguisu:

  1. Uguisu have a very melodious chirp, one of the most refreshing in the bird world. In fact, when people actually see the pale, olive-coloured Uguisu, they are surprised that something so drab-looking can produce such a beautiful sound. 
  2. Speaking of their song, Uguisu songs are thought to fulfill multiple purposes. Apart from functioning as mating calls, Uguisu are also thought to use songs to wage wars, claim territories, convey danger and indicate the presence of food. Each song is slightly distinct from the other. 
  3. During breeding season, it is the Uguisu female that builds the nest, incubates the eggs, feeds the newborn chicks and teaches them to fly. The males’ only role is to fertilise the eggs. 
  4. Uguisu droppings are one of the most sought-after natural items in Japan. They are used to make skin lightening & brightening creams. It is believed that Geisha and Kabuki actors in the Edo period routinely applied it to their faces in preparation for their performances. Uguisu-feaces inclusive cosmetic – “Uguisu-no-Fun” – was sold extensively in Japan for quite a long time, with companies often illegally capturing and caging Uguisu birds in captivity. This was the case until authorities set in place stringent measures to prevent this illegal kidnapping. It was reported that the secret to Victoria Beckham’s beauty was Uguisu-droppings cream. 
  5. Uguisu resemble Bushtits and Nightingales in appearance. That’s why the discoverer of the Uguisu – Heinrich von Kittlitz – confused them for nightingales. That’s why even today, the Uguisu  are called Japanese Nightingales outside Japan. 

Bonus

There is a type of wooden floorboard used in traditional Japanese construction, which when stepped on creates a creaking sound that is eerily similar to the call of the Uguisu  bird. This type of floorboard is called – Uguisubari – in Japan. The purpose of these floorboards is to announce to the home owner, the presence of other people (often unwelcome & uninvited) in the house.

Video: Listen to a Uguisu  tease us with his/her beautiful voice. Notice how he/she isn’t visible at all. These birds are masters of camouflage. 

Uguisu 2
An Uguisu in the wild. (image source)
Uguisu 3
A bottle of Uguisu-no-Fun face cream made from Uguisu droppings. (image source)

-NISHA PRAKASH 

P.S: Featured image
Image

I’m Celebrating My First Anniversary At WordPress & Stories So Wild!

Hey everyone! It gives me great pleasure to announce that today – October 9th 2018 – is My 1 Year Anniversary at WordPress.

It was a year ago that I decided to pick up my laptop and start blogging about a topic that I was most passionate about – wildlife. I thought I’d take this time (and use this post) to talk about my experience so far and the amazing journey I’ve been on during this eventful year. 

I have always loved wildlife. As long as I can remember, I’ve picked up books that dealt with animals, plants, rocks, water bodies…the list is endless. Be it stories by Enid Blyton or memoirs by Jane Goodall, each book held my fascination and still do so today. Although I don’t have an academic background in wildlife and I don’t have much field experience, apart from the ocassional safaris and treks through protected parks, I have always felt the only prerequisite needed to write about wildlife is – passion. And that’s something I have in excess of. 

My journey this year has been amazing and I’ve gone through such a growth curve. I’ve learnt what kind of material ticks in the blogging world, what type of writing format I’m good at, what type of work my readers love to read and most importantly, what type of content gets the word out about the wonderful plants, animals & arthropods that occupy our world. I hope I’ve been able to (and hope to continue to) do my bit to help reduce ignorance and increase empathy towards the wild. 

I have been inspired by so many writers, painters, bloggers, photographers – both on WordPress and those outside it – the list of people whose creative work has inspired my creative juices to flow, is endless. I have gained immense knowledge about the different kinds of science writing in the literary world and I’m now more aware about my responsibilities as a science writer. I am discovering new ways to discharge these responsibilities with care and finesse. 

I have experimented with multiple blog formats over the course of this year and I am now beginning to understand where my future lies in the world of wildlife blogging. For this, I have my readers to thank. Your feedback has helped me find my voice – a voice that works for both you and me – a voice that hopefully works in favour of the wild we are working together to protect, preserve and promote. 

I’d also like to thank my family – my parents & sister – for their constant encouragement, without which I would never have had the courage to channel my passion into words. This blog is a source of comfort and joy to me today. Your critique and directions have helped me hone my writing and they challenge me to take on more challenging topics of discussion each day. 

Finally, I’d like to end by thanking everyone of my readers & followers for being with me on this exciting journey. I hope we can walk arm-in-arm for years to come, learning about the wild we all love so much. 

Have a great evening!

Lots of love, 

Nisha Prakash 

 

 

Image

5 Fun Facts About Sea Sponge

Sea Sponges are multi-cellular creatures that do not have a brain and organ systems and depend on the constant flow of water through their porous bodies to get the oxygen and food they need to survive. There are over 9000 recorded varieties of sea sponges in the world today and they can be found at various depths right from the seashore to the abyssal zone, which is the deepest part of the ocean. 

Here are 5 fun facts about them: 

  1. Fossil records of sea sponges indicate that sponges first made an appearance on the Earth 650 million years ago. This makes them one of the earliest life forms on the planet.
  2. There are currently 480,931 marine species known and on record and an estimated 2 million that are as yet unrecorded and unknown (i.e. there is not enough evidence – be it visual proof or physical proof – to classify any unknown animal as a distinct species) in all the lakes, seas and oceans of the world. It’s believed that 75% of the world’s entire marine population (480K + 2 Million) accounts for sponges.
  3. Since they don’t have any age-rings (like in trees), it can be hard to accurately estimate the age of a sea sponge. But analysis of growth rates indicates that some sea sponges grow 0.2 mm (0.000656168 feet) per year. Based on this, sponges as small as 1 meter (3.2 feet) wide may be over 4500 years old!
  4. A sea sponge in the Caribbean – Tectitethya crypta – produces two chemical compounds which can treat certain types of cancer and HIV. The chemicals – spongothymidine and spongouridine – have been used to develop the HIV drug Azidothymidine (AZT) which can be used to prevent mother-to-child and needle-to-skin AIDS/HIV transmission. The same chemicals have also helped create medication for leukemia and herpes. 
  5. The biggest debate since the time of Aristotle has been – “Are sea sponges plants or animals?” Although they resemble plants in appearance and remain permanently fixed to the spot they grow on like plants, sea sponges are not plants. Why? 

– Sea sponges can’t produce their own food like plants and rely on stray organic matter to float into their pores via the flowing water.

– Sea sponges have an immune system like other animals which reject dissimilar cells if transplanted into them. Scientists need to use immunosuppressants to successfully transplant dissimilar cells into their bodies. 

– Finally, some sea sponges produce and release sperm to indulge in sexual reproduction. 

These characteristics makes sea sponges inherently animal-like.

 

Bonus

Today, you can find a feminine hygiene product called “Menstrual Sponges” on the market. Basically, these are sea sponges that are used as re-usable tampons. In many parts of the world (especially in developed, first-world countries), sea sponges are a favoured alternative to toxic, non-biodegradable and expensive sanitary pads and tampons. Here is a link to the Top 5 most preferred sea sponge tampons

Would you use them?

 

Tidal zones
Various tidal zones in the ocean – sea sponges are found at each level, right from the seabed to the Abyssal zone.

 

Sea Sponge 2
Sponges grow in large clusters across the ocean bed. (image source)

 

Sea Sponge 3
A female sea sponge that’s spawning .i.e. releasing fertilised eggs into the ocean. Most sponges are hermaphrodites – both male and female – and can produce sperm and eggs simultaneously.  (image source)

 

Sea Sponge 4
Different types of sea sponges in the world. (image source)

 

 

-NISHA PRAKASH 

P.S: Featured image source